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To clarify the function of gravity in the shallow-water theory of the interfacial
instability in aluminium reduction cells, we analyse the existing long-wave theory of
the instability in the limit of vanishing gravitational acceleration g. The flow then
has an inner and outer structure, with gravity remaining essential within thin layers
coating the cell walls. In those thin wall layers, the growing disturbance takes the
form of a trapped magnetogravity wave propagating horizontally on the internal
interface, and the growth rate σ is determined by the coupling of that edge wave to
the large-scale flow in the core of the cell; that coupling is expressed as an oblique-
derivative problem for the core flow. Although σ is asymptotically independent of
g, gravity is essential to the long-wave instability because a correlation imposed by
the magneto-gravity waves is essential for the disturbance to extract power from the
mean state.

1. Introduction
Aluminium is produced by passing an electric current through a solution of alumina

in molten cryolite. As the oxide is reduced, metal droplets form and sink to create an
underlying dense liquid layer. To reduce electrical resistance, the overlying layer of
electrolytic solution should be as thin as possible, but very thin layers are unstable
to long waves on the internal interface. If allowed to grow, those waves short-circuit
the cell. In an existing model of the instability, a liquid layer of low conductivity
floats on a second, highly conductive liquid layer; both layers are of finite, constant
thickness. A uniform vertical electric current Jo per unit area is passed across this
layered system, within which there is also a uniform vertical magnetic field Bo caused
by currents outside the cell. Hydrostatic equilibrium is possible for that configuration,
but is unstable to long waves on the internal interface if the product JoBo exceeds a
critical value (Bojarevics & Romerio 1994; Sneyd & Wang 1994; Davidson & Lindsay
1998).

Because the mechanism for the hydromagnetic instability is unclear, Davidson
& Lindsay formulate a compound pendulum model. Like the reduction cell, their
pendulum has an equilibrium state that loses stability if the product JoBo exceeds a
critical value; gravity plays no part in causing that instability, but merely influences
the critical value of JoBo. To connect the pendulum model to the hydromagnetic
instability, the authors prove that the total momentum of the liquid aluminium
satisfies the same ordinary differential equation (ODE) as the generalized coordinates
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of the pendulum; they infer that gravity plays no part in causing the hydromagnetic
instability.

By contrast, we prove that gravity is central to the hydromagnetic instability
described by the existing long-wave theory. In § 2, we state the equations governing
that theory. In those equations, g multiplies the highest derivative, suggesting that
analysis of the limit g → 0 might give insight into the instability. In § 3, before analysing
that problem, we give a new exact solution to the disturbance equations. It describes a
trapped wave propagating on the aluminium–electrolyte interface bounded by a single
plane wall; far from the wall, the interface displacement and current perturbation
vanish. By writing a balance for an energy-like functional, we prove that the wave
grows because power is fed to it from the background current via the coupling of
displacement and perturbation current at the wall, and we conclude that gravity is
essential to the instability because the edge wave determines the phase relation needed
for power to be fed to the disturbance.

In § 4, we analyse the singular limit g → 0 to prove that the conclusions drawn
from the edge-wave solution also apply for a cell of arbitrary planform. In this limit,
gravity affects the flow directly only in thin boundary layers coating the walls; the
flow there is independent of cell planform, and so is a special case of our edge-wave
solution. The growth rate of the instability is determined physically by the coupling of
that boundary layer flow to the large-scale (core) flow in the rest of the cell. We show
that the growth rate is asymptotically independent of g because the jump condition
can be expressed purely in terms of core variables; however, gravity is essential to the
instability because it establishes the flow structure from which that jump condition
follows.

Because our analysis in § 4 also predicts that the growth rate is asymptotically
independent of cell planform, we verify that result in § 5 using the instability in a
channel. In that case there is also a critical value gc of gravity, and we verify that
the power supplied at the wall is positive if the base state is unstable, but vanishes
otherwise.

In § 6, we relate our analysis to that of Davidson & Lindsay by proving that the
velocity in the core of the cell satisfies the same ODE as the generalized coordinates in
their pendulum model; but we also explain why it does not follow from their analogy
that gravity is unimportant to the mechanism of the hydromagnetic instability.

2. Problem statement
Figure 1 shows the geometry of the reduction cell. The walls are vertical and all cell

boundaries are rigid; only the fluid–fluid interface is free. The z-axis is vertical with
origin at the equilibrium location of that interface; x̂, ŷ and ẑ are unit vectors in the
coordinate directions. The cell planform occupies area A. The inward unit normal
to the curve C bounding A is n̂, the tangent ŝ = n̂ × ẑ; also s and n denote distance
in the corresponding directions. A dot on a variable indicates a partial derivative
in time t . In general, subscripts denote partial derivatives in spatial coordinates;
the exception is that subscripts e and a refer to properties of the electrolyte and
aluminium layers. The current J = j a,e + J ẑ, and the velocities are va,e + wa,e ẑ, so
that j and v are horizontal vectors. The electrolyte has density ρ, and the metal,
ρ +�ρ. Unlike previous writers on this subject, we use the Boussinesq approximation
because �ρ � ρ in practice. The unperturbed depths de and da are constant; the total
depth d = de +da . The amplitude of the interface deflection is a; the scale L is half the
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Figure 1. Definition sketch.

minimum horizontal dimension of the cell. The (Boussinesq) speed of a long internal
gravity wave C =

√
�ρ gdade/(ρd).

In the hydrostatic base state, the interface is horizontal, the current J̄ = −Jo ẑ,
magnetic field B̄ = Bo ẑ −µJox ŷ, and pressure gradient ∇p̄ = − (ρ ′g ẑ +µJ 2

o x x̂) ; here
ρ ′ is ρ or ρ + �ρ, for z > 0 or z < 0 respectively, and µ is the permeability of empty
space. The horizontal field −µJox ŷ is induced by the uniform current −Jo ẑ within
the cell, and the uniform vertical field Bo ẑ by currents external to the cell. In the
base state, the liquids are stagnant because the body force is irrotational when the
interface is horizontal.

In the perturbed state, the interface displacement is η(x, y, t), and the pressure
within the electrolyte extrapolated to z = 0 is P (x, y, t). Infinitesimal long-wave
disturbances are governed by the following equations:

ρv̇e = −∇P, ρv̇a = −∇(P + �ρ gη) + j a × ẑBo, (1a, b)

de∇ · ve − η̇ =0, da∇ · va + η̇ = 0, (1c, d)

j a = ∇χ, ∇2χ = ηJo/(dade); (1e, f )

on C, n̂ · va,e = 0 = n̂ · j a. (1g, h)

These are six equations for the six unknowns ve, va , P , η, j a and χ; these variables
depend only on x, y and t . Problem (1) is derived by Bojarevics & Romerio (1994,
equations 3.33, 3.38, 3.39), and by Davidson & Lindsay (1998); our equations differ
from those of the latter authors only because we make the Boussinesq approximation.

We see that (1) consists of the shallow-water equations (1a)–(1d) for a layered
system, supplemented by a simplified form of the Lorentz force. That simplified form
is appropriate because the conductivities of the electrolyte, the carbon electrodes
forming the roof and floor of the cell, and the aluminium satisfy σe � σc � σa.

Consequently, the disturbance current in the highly conductive aluminium sees the
carbon floor of the cell as insulating, and so runs along the aluminium, remaining
nearly horizontal. Conversely, the electrolyte is sandwiched between the carbon roof
of the cell, and the highly conducting metal; the disturbance current follows the
shortest path possible between the two good conductors, and so is approximately
vertical. For long waves, it follows after some simple scaling analysis that within the
electrolyte, the disturbance Lorentz force is negligible, whereas within the metal, the
disturbance Lorentz force is j a × ẑBo. Further detail can be found in the literature.

The system is closed by (1e) and (1f ), which together provide an equation for the
current j a in the aluminium. These equations follow from the conditions ∇ × J = 0 and
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∇ · J = 0 on the total current J . The first of these expressions is the induction equation,
simplified for quasi-steady fields at low magnetic Reynolds number, and (1e) follows
by applying its vertical component to the aluminium. The second condition holds
because ∇ × B = µJ in the magnetohydrodynamic approximation. The continuity
equation (1f ) follows in the long-wave limit by analysing this pair of equations for J
for both the electrolyte and metal, using the ordering of the electrical conductivities
given above; (1f ) states that regions where the electrolyte is locally thinned, so that
η > 0, act as sinks of j a because the thinner electrolyte layer allows more current to
flow downwards into the metal.

We digress to discuss the conditions under which our analysis of the shallow-water
theory (1) is meaningful. Edge waves are central to our argument, and (1) admits such
waves because the simplified form of Lorentz force in (1b) is solenoidal by (1e). To
learn precisely when that approximation holds, we note that because ∇ × B = µJ and
∇ × J = 0, without further approximation ∇ · (J × B) = −µJ 2. The perturbation to
this divergence is ∼ µJoχd/L2, because ∇ · J = 0 requires the perturbation in vertical
current to be ∼ jad/L. But by (1f ), χ ∼ aJoL

2/d2. Consequently, the divergence of
the perturbation Lorentz force ∼ JoBoL/(�ρ gd) in comparison with the divergence
�ρ g ∇2η of the body force in (1b). The relation Bo ∼ µJoL has been used. The error
made by taking the Lorentz force as solenoidal is therefore negligible if

d/L � G, G = �ρ gdade/(JoBoL
2). (2a, b)

In the derivation of (1), the limit d/L → 0 has already been taken, and it follows from
(2a) that it is legitimate to analyse the resulting model (1) in the limit G → 0; but (2a)
also implies that for small G, there also exist long-wave disturbances not described by
(1). It would be interesting to see the case g =0 analysed without using shallow-water
theory. We return to our analysis of (1).

We non-dimensionalize (1) using scales that are independent of gravity; specifically,
the time scale on which the Lorentz force balances inertia is

T =
√

ρd/(JoBo), (3)

and we introduce dimensionless variables (without asterisks):

(x, y)∗ = L(x, y), t∗ = T t, v∗ =
aL

deT
v, η∗ = a η, χ∗ = a

JoL
2

dade

χ. (4a−e)

We have chosen the scale for χ by balancing terms in (1f ).
After non-dimensionalizing (1), we take the divergence of the difference of (1a) and

(1b), then use (1c) and (1d) to eliminate ve and va . This shows that the displacement
η(x, y, t) and potential χ(x, y, t) satisfy

η̈ = G∇2η, ∇2χ = η within A; (5a, b)

on C, χn =0, Gηn = −χs, (5c, d)

where (5d) is derived by forming the difference of the normal component of the
momentum equations, then using (1g) to eliminate n̂ · ve and n̂ · va . The instability is
thus governed by the wave equation for η, and the Poisson equation for χ . These
equations are coupled only at the boundary because the disturbance Lorentz force is
solenoidal in the long-wave approximation, as discussed above.

To clarify the instability mechanism, we form a balance equation for the quantity
E = 1

2

∫
{η̇2 + G(∇η)2} dA. (If (5a) described the displacement η of a membrane, E

would be the mechanical energy, and for brevity, we call E the disturbance energy.)
By multiplying (5a) by η̇, integrating the result over A, and using the divergence
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theorem,

Ė = −G
∮

C
η̇ ηn ds =

∮
C

η̇ χs ds, (6a, b)

where we have used (5d). Identity (6a) implies that the limit G → 0 is indeed singular;
for if we were to ignore the warning given by (2a), and set G = 0, E would be
independent of time. It follows that if there is to be an instability for G → 0, gravity
must remain important near the wall where the boundary integral in (6a) is evaluated.
Further, from (6b) we infer that gravity will remain important by causing the phase
relationship between η̇ and χs to be such that the right-hand side of (6b) is positive.

We shall need the velocities later to interpret the flow; their time-derivatives are

v̇e = ∇χ̈ , v̇a = ∇χ̈ + (d/da){∇ × (χ ẑ) − G∇η}, (7a, b)

V̇ = ∇(χ̈ − Gη) + ∇ × (χ ẑ), (7c)

where the depth-averaged velocity V = (deve + dava)/d . To derive (7), we first express
the dimensional pressure P∗ in terms of χ∗. On combining (1a), (1c) and (1f ), we
find that P∗ + ρdaχ̈∗/Jo is harmonic within A, with zero normal derivative on the
boundary C because both P∗n and χ∗n vanish there by (1g) and (1h). So,

P∗ = −ρdaχ̈∗/Jo + fn(t), (8)

provided (1g) and (1h) hold, so the walls are impermeable and non-conducting.
Equations (7a) and (7b) follow by substituting for P∗ in (1a) and (1b).

By substituting the expression {η, χ} = eσ t {H (x, y), K(x, y)} into (5), we find that
the growth rate σ satisfies

τH = G∇2H, H = ∇2K within A; (9a, b)

on C, Kn = 0, GHn = −Ks; (9c, d)

τ = σ 2. (9e)

3. Edge wave propagating along a plane wall
To describe this solution, we take the x-axis along the wall, with y = 0 at the wall.

By substituting {H, K} = {H̃ (y), K̃(y)}eikx into (9), we find that for 0 < y < ∞,

H̃ yy − (k2 + τ/G)H̃ = 0, K̃yy − k2K̃ = H̃ ; (10a, b)

on y = 0, K̃y = 0, GH̃ y = −ikK̃; (10c, d)

as y → ∞, H̃ → 0. (10e)

This determines the growth rate as functions of the real parameters k and G. In (10e)
we require H̃ to vanish at infinity; of course there are solutions periodic in both
space and time which do not satisfy this condition (a stone tossed anywhere into the
cell creates waves). In applying (10e), we choose to study disturbances which can be
triggered near the wall, and which remain trapped there as they grow in time. We
discuss the other, periodic solutions briefly at the end of this section.

The solution of (10a, b) satisfying (10c, e) is

H̃ = e−�y, K̃ =(kτ )−1G{ke−�y − �e−ky}; (11a, b)

� = k
√

1 + τ/(2γ ), γ = Gk2/2. (11c, d)
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Figure 2. Dispersion relation (13) for edge waves. Broken curves, asymptotes: for γ → 0,
σ ∼ (−i)1/2 −

√
γ /2 − 3

4
i1/2γ ; for γ → ∞, σ ∼ −i

√
2γ {1 + 1

8
γ −2 + 1

8
iγ −3}.

Here we define
√

z to be the square root with positive real part, i.e. we take the branch
cut so that −π < arg z � π. In (11a), we have taken H̃ (0) = 1; this is consistent with
our choice in (4d) of the amplitude a as the scale for η.

By applying the remaining condition (10d), we find that

(τ + i)
√

1 + τ/(2γ ) = i. (12)

By squaring (12), we find that τ satisfies a quadratic equation, whose relevant root is

τ = −i − γ −
√

γ 2 − 2iγ . (13)

The redundant root is eliminated by showing that it does not satisfy (12) for small γ .
Figure 2 shows the growth rate σ calculated from (13) as a function of

√
γ . We

see that these edge waves grow for all k, because Re σ > 0; however, because Re σ

decreases with increasing
√

γ , we conclude that when gravity is strong, it acts to
stabilize the hydrostatic base state. We also see that because Im σ < 0 for all k, the
growing wave propagates only in the positive x-direction, i.e. in the unique direction
n̂ × Bo.

We now verify that that the wave grows by extracting power from the applied
current via the component of disturbance current along the wall. By applying the
energy identity (6) to a strip A of length 2π/k in the x-direction and extending from
y = 0 to infinity, we find that

Ė =

∫ 2π/k

0

(η̇ χx)y=0 dx = −πe(σ+σ̄ )tIm{σ̄ K̃(0)}, (14a, b)

where σ̄ is the complex conjugate of σ . (To derive (14b), we expressed the real
variables η̇ and χx in terms of the corresponding complex quantities. That gives η̇χx

as the sum of four terms: two of these integrate to zero over a wavelength; the other
two can be expressed as Im{σ̄ H̃ (0)K̃(0)}. Equation (14b) follows since H̃ (0) = 1.)

To prove that Ė > 0, we first use (11b, c) and (12) to show that K̃(0) = G/(τ + i).
Now, τ + i lies in the second quadrant of the complex plane, because by (13) it is the

difference of −γ , which lies on the negative real axis, and
√

γ 2 − 2γ i which lies in the

fourth quadrant. So σ̄ K̃(0) lies in the lower half-plane, because it is the quotient of σ̄ ,
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which is in the first quadrant by figure 2, and τ + i which is in the second quadrant.
The right-hand side of (14b) is therefore positive, as required for instability.

Next, we discuss the inner-and-outer structure possessed by these edge waves in
the weak gravity limit γ → 0. Equation (13) then requires that τ → −i, and by (11c),
�
√

γ /k → (1 − i)/2. Consequently, in this limit � is large, and (11a) shows that the
interface displacement is confined to a thin wall layer of characteristic thickness
O(k−1√

γ ). By contrast, (11b) shows that the potential decays in y on the length

scale k−1 set by the wavelength, i.e. slowly compared with the interface displacement.
Moreover, by (11a)

η ∼ eť−y̌ ei(kx+y̌−ť), (15)

for G → 0, where ť = t/
√

2 and y̌ = y/
√

2G. It is easily verified that this expression
satisfies the wave equation (5a) for vanishing G. Physically, the expression describes
a wave propagating away from the wall; the wave decays in y̌ but grows with time.

Lastly, we discuss the solutions of (10a–d) that are purely periodic in space and
time. Lukyanov, El & Molokov (2001) use those solutions to describe reflection of
a wave by the wall; they prescribe a non-zero amplitude at infinity, rather than
requiring H to vanish there, and they find that the amplitude of the reflected wave
exceeds that of the incident wave. This result leads them to propose that instability
occurs by repeated wave reflection, but they do not show precisely how amplification
on reflection would lead to exponential growth in time. Equation (15) provides a
counter-example to their proposition because it cannot be interpreted in terms of
incident and reflected waves.

4. Solution for an arbitrary finite domain in the limit G → 0

We now show that the separation of scales discussed above means that the edge-
wave solution generalizes to arbitrary cell planforms. We define the outer limit as
G → 0 with fixed x and y not on the wall. In that limit, (9a) simplifies to H =0, so
that the interface perturbation vanishes. Physically, this means that modes growing
on the time scale T , which is independent of g, must be excited near the walls in
a thin layer in which the outer scaling breaks down. As in the edge-wave solution,
these waves decay as they leave the walls so that H vanishes in the core of the cell;
consequently, ∇2K = 0, by (9b). Because all time derivatives are lost in the outer limit,
the growth rate must be determined by the coupling between the core flow and wall
layers.

The outer problem cannot hold near the wall because the order of (9a) is lowered in
the outer limit, making it impossible to satisfy both boundary conditions (9c) and (9d).
We rescale to retain the highest derivatives within a boundary layer. First, continuity
of current normal to the wall requires the change �K in potential across the wall
layer of thickness δ to satisfy �K/δ ∼ K; by (9a), τ ∼ G/δ2; by (9b), H ∼ �K/δ2; and
by (9d), GH/δ ∼ K . By solving these equations for the unknowns �K , δ, K and τ , we
find that τ ∼ 1, δ ∼

√
G, �K ∼ HG and K ∼ H

√
G. As in § 3, we choose H ∼ 1; this is

consistent with our choice in (4d) of the amplitude a as the scale for η.
We therefore define inner variables (with circumflexes) by

Ĥ = H, K̂ = {K − Kw(s)
√

G}/G, ŝ = s, n̂ = n/
√

G, (16a−d)

where K̂ represents the change in potential across the wall layer, and Kw(s)
√

G =
limn→0 K(s, n), i.e. the core potential evaluated at the wall.
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In the inner limit defined by G → 0 with n̂ fixed, (9) and (16) require

τĤ = Ĥ n̂n̂, Ĥ = K̂n̂n̂ for 0 < n̂ < ∞; (17a, b)

at n̂ =0, K̂n̂ = 0, Ĥ n̂ = −K ′
w(ŝ), (17c, d)

and matching requires Ĥ and K̂n to be finite at infinity. The prime denotes
differentiation. Both boundary conditions (9c) and (9d) are applied in the inner
problem (17).

The solution of (17) finite at infinity is

Ĥ = σ −1K ′
w(ŝ)e−σ n̂, K̂ n̂ = τ−1K ′

w(ŝ) {1 − e−σ n̂}, (18a, b)

where τ is defined by (9c). We see that at the outer edge of the wall layer, the
displacement vanishes, and the current is finite.

The matching condition on the solution is limn→0 Kn = limn̂→∞ K̂n̂, which can be
written limn→0 Kn = τ−1K ′

w(s) by (18b). So within the core, the potential satisfies the
oblique-derivative problem

∇2K = 0 within A; (19a)

on C, τKn = Ks. (19b)

Boundary condition (19b) can be also be derived by eliminating Ĥ between the
left-hand sides of (17a) and (17b), then integrating the resulting expression across the
wall layer, and finally applying (17c) and (17d). That argument identifies (19b) as a
jump condition that is independent of the internal structure of the wall layer.

The growth rate σ is thus determined by the core problem (19), but the boundary
condition (19b) on that problem is imposed by the wall layers. Gravity is essential to
the existence of the edge waves that set up the jump condition, but that condition is
asymptotically independent of G, and so of gravity.

By inspection, (19) is invariant under conformal mapping so that τ is independent of
the planform. But for a half-space, (13) implies that for G → 0, τ → −i. Consequently

lim
G→0

σ = e−iπ/4, (20)

for all planforms.

5. Channel waves
This is the simplest case having a finite critical value Gc. We verify the energy

identity (6) by showing that the right-hand side of (6b) vanishes for G > Gc, but is
positive otherwise; the disturbance therefore oscillates neutrally or grows according
to the power supplied to it at the boundary. We also verify (20), by showing that it is
satisfied by the limiting growth rate for a channel.

As in § 3, we let {H, K} = {H̃ (y), K̃(y)}eikx To find the eigenfunctions, we note that
by figure 6(a) of Davidson & Lindsay, the base state loses stability to waves with
k = 0+. So, we let

H̃ = H̃ 1 + O(k), K̃ = k−1K̃0 + K̃1 + O(k), τ = τ1 + O(k), (21a−d)

where the coefficients H̃ 1, K̃0, τ1, · · · are independent of k. In (21c), K̃ varies as k−1 at
leading order because as k → 0, the current χx must remain non-zero for instability.

The boundary-value problem for H̃ and K̃ is identical with (10), except that (10c, d)
are now applied at both walls at y = ± 1. By substituting (21) into the modified form
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Figure 3. Dispersion relation (24) for channel waves. Broken curve, dispersion relation

Im σ = 1
2

π
√

G for the lowest allowable pure gravity wave. Critical value, Gc =0.7326.

of (10), we find that K̃0, K̃1 and H̃ 1 satisfy

K̃ ′′
0 = 0, H̃ ′′

1 − �2H̃ 1 = 0, K̃ ′′
1 = H̃ 1 for |y| < 1; (22a−c)

on |y| =1, K̃ ′
0 = 0, K̃ ′

1 = 0, GH̃ ′
1 = − iK̃0; (22d−f )

�2 = τ1/G. (22g)

By solving (22), we find that

lim
k→0

H̃ (y) = (sinh �y)/ sinh �; (23a)

lim
k→0

{K̃(y) − i�G(coth �)/k} = c0 + {sinh �y − �y cosh �}/(�2 sinh �). (23b)

We have normalized the solution so that H̃ (1) = 1. (The integration constant c0 is not
needed here, but can be found by continuing to O(k) in the expansion.)

The growth rate is found either by proceeding to O(k), or by setting k = 0 in the
full dispersion relation �2{1 + G2(�2 − k2)2} + k2 = k� {tanh � coth k + tanh k coth �},
i.e. Davidson & Lindsay’s (5.1), simplified without approximation. By either method,

G2�5 + � = tanh �, (24)

where we have used (22g).
Figure 3 shows σ calculated as a function of G/Gc from (24) and (22g), i.e. σ 2 = G�2.

We see that as G → 0, Re σ and −Im σ for a channel approach the limit (20) predicted
by the asymptotic analysis for a cell of arbitrary planform. Because σ approaches a
limit as G → 0, the complex wavenumber � → ∞, so that (23a) requires that Ĥ → 0
outside thin boundary layers.

Lastly, the disturbance is pumped at the wall if G < Gc, but not otherwise. The
claim follows by using the eigenfunctions (23) to show that

k

2π

∮
η̇χs ds = G3/2|�|2e2σr t

sinh 2�r

cosh 2�r − cos 2�i

, (25)

where �r =Re �, and �i = Im �. Power is therefore fed to the disturbance if �r > 0;
then, Re σ > 0 because σ = �

√
G.
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6. Discussion
The growth rate for G → 0 can also be found for an arbitrary domain without using

conformal mapping. We first prove that the depth-averaged velocity V = 0 within the
core. At the outer edge of the wall layer, η → 0 by (18), and by (7c), V̇ = ∇χ̈ +∇×(χ ẑ).
Consequently n̂ · V̇ = χ̈n − χs , which vanishes by (19b). But within the core ∇ · V̇ = 0;
also ∇ × V̇ =0 by (7c) and the core equation ∇2K = 0. Because V̇ is irrotational and
solenoidal throughout the core, and n̂ · V̇ = 0 on the core boundary, V̇ = 0.

Next, by eliminating χ between the momentum equations (7a) and (7b), then using
the identity ∇η̇ = ∇2ve following from (5b) and (7a), we find that

v̈a − v̈e = (d/da){ve × ẑ − G∇2ve}. (26)

But within the core, the term G∇2ve is negligible for vanishing G; moreover, the
depth-averaged velocity V vanishes identically there, so that va = −vede/da , and by
(26)

v̈e = ẑ × ve. (27)

This holds pointwise within the core in the limit G → 0. (Boundary layer mechanics
are built into (27), because the jump condition is used to prove that V =0 in the
core.) Because (27) is an ODE in ve, the growth rate is identical for all planforms, as
we also found by another argument in § 4.

Lastly, we compare our calculation of the growth rate with a momentum integral
analysis given by Davidson & Lindsay (1998, § 5.2). To clarify the relation between
the two approaches, we give a new derivation of their result; neither uses the jump
condition. Because V is solenoidal with vanishing normal component on the cell
wall,

∫
A V dA = 0, by the identity Vi = ∂(xiVj )/∂xj and the divergence theorem. That

relation allows the area integral of va to be written in terms of ve. By integrating (26)
over A, and eliminating va , we find that for G → 0

M̈ = ẑ × M, M =

∫
A

ve dA. (28a, b)

This is equivalent to Davidson & Lindsay’s momentum integral. In (28a) we have
taken as negligible for small G a term G

∫
∇2ve dA. Although (28) does not contain

G, it does not follow that the instability mechanism is independent of g, because
in forming (28), all spatial information is lost. That is obvious in the light of
our asymptotic analysis in § 4, because the wall layer affects the core flow only
through a jump condition that is independent of G. Our analysis shows that
whenever the shallow-water theory holds, gravity is essential to the instability because
magnetogravity waves trapped in a thin wall layer impose the correlation needed for
power to be fed from the mean state to the disturbance. The pendulum model does
not describe that physics, because for it the limit of vanishing g is not singular.
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